WIDFORD LODGE

PREPARATORY SCHOOL

CALCULATION POLICY

THIS POLICY APPLIES TO ALL PUPILS AT WIDFORD LODGE SCHOOL INCLUDING THOSE IN THE EYFS

We hope you will find this policy useful. Included are some of the strategies that may be used to teach maths in each year group.

KEY STAGE 1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and are beginning to read and say numbers above 100 . Children and staff use the vocabulary Hundreds, Tens and Ones for place value.

Addition and Subtraction: A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20. Children's knowledge of number facts enables them to add several 1-digit numbers, and to add/subtract a 1-digit number to/from a 2-digit number. Another important conceptual tool is the ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2 -digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2-digit numbers by counting on or back in 10 s and 1 s . Children may extend this to adding by partitioning numbers into 10 s and 1 s .

Multiplication and Division: Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times 2, \times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.

Fractions: Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

Year 1

	Mental calculation	Physical tools/Written calculation/Language used
$\begin{gathered} Y 1 \\ + \end{gathered}$	Number bonds ('story' of 5, 6, 7, 8, 9 and 10) Count on in 1 s from a given 2-digit number Add two 1-digit numbers Add three 1-digit numbers, spotting doubles or pairs to 10 Count on in 10s from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add 1-digit numbers to 2-digit numbers e.g. Use $4+3$ to work out $24+3,34+3$ Add by putting the larger number first	Children will use fingers, cubes, number lines and 100 squares, Numicon, bar model method Example of bar model: They will use the + and - sign when recording calculations and will record them horizontally only, not using vertical column addition/subtraction $\begin{aligned} & 4+2=4+-=\quad 6={ }_{-}+2 \\ & \\ & \\ & 10+?=12 \end{aligned}$ Vocabulary Add, plus, one more, one less, bonds, partitioning, makes, equal, more, fewer

Widford Lodge Calculation Policy

Y1 -	Number bonds ('story' of $5,6,7,8,9$ and 10) Count back in 1 s from a given 2-digit number Subtract one 1-digit number from another Count back in 10s from any given 2-digit number Subtract 10 from any given 2-digit number Use number facts to subtract 1-digit numbers from 2-digit numbers e.g. Use 7-2 to work out 27-2, 37-2	Children will use fingers, cubes, number lines and 100 squares, Numicon, bar model method They will use the + and - sign when recording calculations and will record them horizontally only, not using vertical column addition/subtraction Vocabulary subtract, one more, one less, bonds, partitioning, makes equal, more, fewer,
$\begin{gathered} Y 1 \\ x \end{gathered}$	Begin to count in 2s, 5 s and 10 s Begin to say what three 5 s are by counting in 5 s, or what four 2 s are by counting in 2 s , etc. Double numbers to 10	Children will count up in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , using the language of lots of The x sign is introduced Use the bar model method 6×2 $\star \star \star \star * *$ objects Vocabulary Double, lots of, groups
$\begin{gathered} Y 1 \\ \div \end{gathered}$	Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number	Children will use cubes to introduce the concept of sharing, bar model method $6 \div 2$ using objects Vocabulary Sharing, halve, groups of
Year 2		
	Mental calculation	Physical tools/Written calculation/Language used
$\begin{gathered} Y 2 \\ + \end{gathered}$	Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 Count on in 1s and 10s from any given 2-digit number Add two or three 1-digit numbers Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10	Children will use fingers, cubes, number lines, 100 and 200 square, base 10, bar model method, numicon Example of bar model: \square They record addition sums horizontally, not in vertical column format, using the language of + and they count on

Widford Lodge Calculation Policy

	$\begin{aligned} & \text { e.g. } 45+4 \\ & \text { e.g. } 38+7 \end{aligned}$ Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers	For 2 digit number addition, children talk about making strings with the tens and ones and if the ones make a ten or greater, they talk about jumping over to the tens Vocabulary Add, plus, one more, one less, bonds, partitioning, makes, equal, more, fewer, increase, sum, more, and, together, total
Y2	Number bonds - know all the pairs of numbers which make all the numbers to 12 Count back in 1s and 10s from any given 2-digit number Subtract a 1-digit number from any 2-digit number using number facts, including bridging multiples of 10 e.g. 56-3 e.g. 53-5 Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in 10s and 1s or by counting up	Children will use fingers, cubes, number lines, 100 and 200 square, base 10, bar model method All written subtractions will be recorded horizontally, not using vertical column subtraction Children will generally subtract by counting back in tens and 1 s , but for sums with a larger difference they will count up from the smaller number to the larger, using a bridge to make the jumps, eg 42-27 27 up to $30=3 ; 30$ up to $40=10 ; 40$ up to $42=2$. Add up the jumps $=15$ As they develop more confidence they will increasingly use number bonds and may count up in 50 s or 100 s Vocabulary Take away, subtract, minus, decrease, fewer

Count in 2s, 5 s and 10 s
Begin to count in 3s
Begin to understand that multiplication is repeated addition and to use arrays
e.g. 3×4 is three rows of 4 dots

Begin to learn the $\times 2, \times 3, \times 5$ and $\times 10$ tables, seeing these as 'lots of' e.g. 5 lots of 2,6 lots of 2,7 lots of 2

Double numbers up to 20
Begin to double multiples of 5 to 100
Begin to double 2-digit numbers less than 50 with 1 s digits of $1,2,3,4$ or 5
Count in 2s, 5 s and 10 s
Begin to count in 3s
Using fingers, say where a given number is in the 2 s , 5 s or 10 s count e.g. 8 is the fourth number when 1 count in $2 s$

Relate division to grouping
e.g. How many groups of 5 in 15 ?

Halve numbers to 20
Begin to halve numbers to 40 and multiples of 10 to 100
Find $1 / 2,1 / 3,1 / 4,3 / 4$ of a quantity of objects and of amounts (whole nos)

Children count up in multiples of 2, 3,5 and 10 using fingers to count the multiples, so that they can easily state that 6 lots of $5=30$ etc.
Use the bar model method
They record their multiples as $3 \times 4=12$ for example
Group objects such as cubes and beads

Vocabulary

Double, lots of, groups, times tables, multiply

Use the bar model method

The \div sign is introduced as the opposite of multiplying and is recorded in sums
Use objects to group/share
Children will record fractions of amounts such as $1 / 2$ of $20=10$ etc

Vocabulary

Shared equally,share, halves, groups, divide into

LOWER KEY STAGE 2

In Lower Key Stage 2, children build on the concrete and conceptual understandings they have gained in Key Stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers. Children and staff use the vocabulary Hundreds, Tens and Ones for place value

Addition and subtraction: Children are taught to use place value and number facts to add and subtract numbers mentally and they will develop a range of strategies to enable them to discard the 'counting in 1s' or fingers-based methods of Key Stage 1. In particular, children will learn to add and subtract multiples and near multiples of 10, 100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.

Multiplication and division: This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to 12×12. Efficient written methods for multiplying or dividing a 2 -digit or 3 -digit number by a 1 -digit number are taught, as are mental strategies for multiplication or division with large but 'friendly' numbers, e.g. when dividing by 5 or multiplying by 20 .

Fractions and decimals: Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form, as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of 1-place decimals, multiplying and dividing whole numbers by 10 and 100 .

Year 3

Mental calculation

Know pairs with each total to 20

$$
\text { e.g. } 2+6=8,12+6=18,7+8=15
$$

Know pairs of multiples of 10 with a total of 100
Add any two 2-digit numbers by counting on in 10 s and 1 s or by using partitioning
Add multiples and near multiples of 10 and 100
Perform place-value additions without a struggle
e.g. $300+8+50=358$

Use place value and number facts to add a
1-digit or 2-digit number to a 3-digit number
e.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$
$676+8$ is 684 since $8=4+4$ and
$76+4+4=84$
Add pairs of 'friendly' 3-digit numbers
e.g. $320+450$

Begin to add amounts of money using partitioning

Physical tools/Written calculation/Language used

Children may use the 100 square for support, bar model method
Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers eg $431+27$ becomes
$400+30+1$
$+\quad 20+7$
$400+50+8$

Begin to use compact (standard vertical) column addition to add numbers with 3 digits, with the concept of 'on the doorstep' where ones or tens move across to the next place value column
Begin to add like fractions

$$
\text { e.g. } 3 / 8+1 / 8+1 / 8
$$

Recognise fractions that add to 1

$$
\begin{aligned}
& \text { e.g. } 1 / 4+3 / 4 \\
& \text { e.g. } 3 / 5+2 / 5
\end{aligned}
$$

Vocabulary: Add, plus, increase, sum, more, and, together, total

Know pairs with each total to 20

$$
\begin{aligned}
& \text { e.g. } 8-2=6 \\
& \text { e.g. } 18-6=12 \\
& \text { e.g. } 15-8=7
\end{aligned}
$$

Subtract any two 2-digit numbers
Perform place-value subtractions without a struggle

$$
\text { e.g. } 536-30=506
$$

Subtract 2-digit numbers from numbers > 100 by counting up
e.g. $143-76$ is done by starting at 76 . Then add 4 (80), then add 20
(100), then add 43, making the difference a total of 67

Subtract multiples and near multiples of 10 and 100
Subtract, when appropriate, by counting back or taking away, using place value and number facts
Find change from $£ 1, £ 5$ and $£ 10$

Know by heart all the multiplication facts in the
$\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables
Multiply whole numbers by 10 and 100
Recognise that multiplication is commutative
Use place value and number facts in mental multiplication
e.g. 30×5 is 15×10

Partition teen numbers to multiply by a 1-digit number
e.g. 3×14 as 3×10 and 3×4

Double numbers up to 50

Use the bar model method Use the counting up bridge method as an informal written strategy for subtracting pairs of 3-digit numbers
e.g. $423-357$

357 up to $360=3 ; 360$ up to $400=40 ; 400$ up to $423=23$ $3+40+23=66$

Vertical column subtraction introduced:
561
-42 'exchanging' from the T's etc

Vertical column subtraction introduced with the concept begin to subtract like fractions

$$
\text { E.G } 7 / 8-3 / 8=4 / 8
$$

Vocabulary

Take away, subtract, minus, decrease, fewer, difference between
Use the bar model method
Use partitioning to multiply 2-digit and 3-digit numbers by 'friendly' 1-digit
numbers, so for example to multiply 47×5

47×5

$40 \times 5=200$
$7 \times 5=\underline{35}+$
235
Followed by;
47
$\frac{x 5}{35}(5 \times 7)$
$+\underline{200}(5 \times 40)$
235

Vocabulary
Multiply, product, times, lots of

Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables
Divide whole numbers by 10 or 100 to give whole number answers
Recognise that division is not commutative
Use place value and number facts in mental division e.g. $84 \div 4$ is half of 42

Divide larger numbers mentally by subtracting the 10th multiple as appropriate, including those with remainders

$$
\text { e.g. } 57 \div 3 \text { is } 10+9 \text { as } 10 \times 3=30 \text { and }
$$

$$
9 \times 3=27
$$

Halve even numbers to 100 , halve odd numbers to 20

Year 4

Mental calculation

Add any two 2-digit numbers by partitioning or counting on
Know by heart/quickly derive number bonds
to 100 and to $£ 1$
Add to the next 100, $£ 1$ and whole number
e.g. $234+66=300$
e.g. $3 \cdot 4+0 \cdot 6=4$

Perform place-value additions without a struggle

$$
\text { e.g. } 300+8+50+4000=4358
$$

Add multiples and near multiples of 10, 100 and 1000
Add $£ 1,10 \mathrm{p}, 1 \mathrm{p}$ to amounts of money
Use place value and number facts to add 1-, 2-, 3- and 4-digit numbers where a mental calculation is appropriate

$$
\begin{aligned}
& \text { e.g. } 4004+156 \text { by knowing that } 6+4=10 \text { and that } 4004+150= \\
& 4154 \text { so the total is } 4160
\end{aligned}
$$

Children talk about the \div sign acting as a knife, cutting up the numbers Use the bar model method
Perform divisions just above the 10th multiple using horizontal or vertical jottings and understanding how to give a remainder as a whole number
$121 \div 4=30 r 1$
$4 x ?=121$
$\left\{\begin{array}{l}10 \times 4=\frac{-40}{81} \\ 10 \times 4=\frac{-40}{41} \\ 10 \times 4=\frac{-40}{1}\end{array}\right.$

Find unit fractions of quantities and begin to find non-unit fractions of quantities: $1 / 5$ of $25=5$, so $2 / 5$ of $25=10$

Vocabulary
Lots of, chunking, groups, sharing

Column addition for 3-digit and 4-digit numbers, bar model method
e.g.

+ 2286
1495

9128
121 (on the doormat)

Add like fractions

		$\text { e.g. } 3 / 5+4 / 5=7 / 5=1^{2 / 5}$ Be confident with fractions that add to 1 and fraction complements to 1 $\text { e.g. } 2 / 3+{ }_{-}=1$
$\begin{gathered} Y 4 \\ - \end{gathered}$	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle e.g. $4736-706=4030$ Subtract multiples and near multiples of 10, 100, 1000, £1 and 10p Subtract multiples of $0 \cdot 1$ Subtract by counting up e.g. $503-368$ is done by adding $368+2+30+100+3$ (so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract $£ 1,10$ p, 1 p from amounts of money Find change from $£ 10, £ 20$ and $£ 50$	Use counting back Use number line and count up in jumps Use the bar model method Use expanded column subtraction for 3 - and 4 digit numbers $\begin{array}{rr} 2345 & 2000300405 \\ -\frac{1234}{1111} & \frac{-1000200304}{1000100101} \end{array}=1111$ Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100 e.g. 2002-1865 Use compact vertical column subtraction, exchanging digits where necessary Vertical column subtraction 561 - 42 'exchanging' from the T's etc. \qquad Subtract like fractions $\text { e.g. } 4 / 5-3 / 5=1 / 5$ Use fractions that add to 1 to find fraction complements to 1 $\text { e.g. } 1-2 / 3=1 / 3$
	Know by heart all the multiplication facts up to 12×12 Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by 10, 100, 1000 Multiply multiples of 10,100 and 1000 by 1 -digit numbers $\begin{aligned} & \text { e.g. } 300 \times 6 \\ & \text { e.g. } 4000 \times 8 \end{aligned}$	Use the bar model method Use a vertical written method to multiply a 1-digit number by a 3-digit number (ladder method) e.g. $\begin{array}{r} 324 \\ \times \quad 5 \end{array}$

	Use understanding of place value and number facts in mental multiplication e.g. 36×5 is half of 36×10 e.g. $50 \times 60=3000$ Partition 2-digit numbers to multiply by a 1-digit number mentally e.g. 4×24 as 4×20 and 4×4 Multiply near multiples by rounding $\text { e.g. } 33 \times 19 \text { as }(33 \times 20)-33$ Find doubles to double 100 and beyond using partitioning Begin to double amounts of money e.g. $£ 35.60$ doubled is $£ 71 \cdot 20$	$\begin{gathered} 20(4 \times 5) \\ 100(5 \times 20) \\ 1500(5 \times 300) \\ ------ \\ 1620 \end{gathered}$ Use an efficient written method to multiply a 2-digit number by a number between 10 and 20 by partitioning Vocabulary product, times, lots of, multiply
$\begin{gathered} \text { Y4 } \\ \div \end{gathered}$	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10, 100, to give whole number answers or answers with 1 decimal place Divide multiples of 100 by 1 -digit numbers using division facts $\text { e.g. } 3200 \div 8=400$ Use place value and number facts in mental division $\text { e.g. } 245 \div 20 \text { is half of } 245 \div 10$ Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate $\begin{aligned} & \text { e.g. } 156 \div 6 \text { is } 20+6 \text { as } 20 \times 6=120 \text { and } \\ & 6 \times 6=36 \end{aligned}$ Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money e.g. half of $£ 52.40$ is $£ 26.20$	Use the bar model method Use a written method to divide a 2-digit or a 3-digit number by a 1-digit number, 'chunking' to find known multiples to subtract, and extending to using the 'bus stop' 21 $\begin{gathered} 3 / 63 \\ \frac{-30}{33}(10 \times 3) \\ \frac{-30}{3}(10 \times 3) \\ \frac{-3}{}(1 \times 3) \\ 0 \end{gathered}$ Give remainders as whole numbers Begin to reduce fractions to their simplest forms Find unit and non-unit fractions of larger amounts Start to find $50 \%, 10 \%, 25 \%$ of amounts Vocabulary Lots of, chunking, groups, sharing

UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

Multiplication and division: Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.

Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 5

Year 5		
	Mental calculation	Written calculation/Language used
	Know number bonds to 1 and to the next whole number Add to the next 10 from a decimal number $\text { e.g. } 13 \cdot 6+6 \cdot 4=20$ Add numbers with 2 significant digits only, using mental strategies $\begin{aligned} & \text { e.g. } 3 \cdot 4+4 \cdot 8 \\ & \text { e.g. } 23000+47000 \end{aligned}$ Add 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 $\begin{aligned} & \text { e.g. } 8000+7000 \\ & \text { e.g. } 600000+700000 \end{aligned}$ Add near multiples of 10,100,1000, 10000 and 100000 to other numbers $\text { e.g. } 82472+30004$ Add decimal numbers which are near multiples of 1 or 10, including money $\begin{aligned} & \text { e.g. } 6 \cdot 34+1 \cdot 99 \\ & \text { e.g. } £ 34 \cdot 59+£ 19.95 \end{aligned}$ Use place value and number facts to add two or more 'friendly' numbers, including money and decimals $\begin{aligned} & \text { e.g. } 3+8+6+4+7 \\ & \text { e.g. } 0 \cdot 6+0 \cdot 7+0 \cdot 4 \end{aligned}$	Use the bar model method Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of 2-place decimal numbers, including amounts of money Begin to add related fractions using equivalences (higher ability children will add mixed numbers and will find common denominators) $\text { e.g. } 1 / 2+1 / 6=3 / 6+1 / 6$ Choose the most efficient method in any given situation

$$
\text { e.g. } 2056+44
$$

Subtract numbers with 2 significant digits only，using mental strategies
e．g．6．2－4．5
e．g． $72000-47000$
Subtract 1－or 2－digit multiples of 10，100，1000， 10000 and 100000
e．g． $8000-3000$
e．g． $60000-200000$
Subtract 1－or 2－digit near multiples of 10，100，1000， 10000 and 100000 from other numbers
e．g． $82472-30004$
Subtract decimal numbers which are near multiples of 1 or 10 ，including money
e．g．6．34－1．99
e．g．$£ 34.59-£ 19.95$
Use counting up subtraction，with knowledge of number bonds to 10,100 or $£ 1$ ，as a strategy to perform mental subtraction
e．g．$£ 10-£ 3.45$
e．g．1000－782
Recognise fraction complements to 1 and to the next whole number
e．g． $12 / 5+3 / 5=2$
Know by heart all the multiplication facts up to
12×12
Multiply whole numbers and 1－and 2－place decimals by 10，100，1000， 10000
Use knowledge of factors and multiples in multiplication
e．g． 43×6 is double 43×3
e．g． 28×50 is $1 / 2$ of $28 \times 100=1400$
Use knowledge of place value and rounding in mental multiplication
e．g． 67×199 as $67 \times 200-67$
Use doubling and halving as a strategy in mental multiplication
e．g． 58×5 is half of 58×10
e．g． 34×4 is 34 doubled twice
Partition 2－digit numbers，including decimals，to multiply by a 1－digit number mentally
e．g． 6×27 as $6 \times 20(120)$ plus 6×7（42）

Use the bar model method

Use compact or expanded column subtraction to subtract numbers with up to 5 digits
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000
Use complementary addition for subtractions of decimal numbers with up to 2 places，including amounts of money
Begin to subtract related fractions using equivalences（higher ability will subtract mixed numbers and will find common denominators）

$$
\text { e.g. } 1 / 2-1 / 6=2 / 6
$$

Choose the most efficient method in any given situation

Vocabulary

Take away，minus，difference between，decrease，＇steal＇

Use the bar model method

ma．．．．．

```
    习话目
```

 astrow *mon.
 पण|
 ncewspapowes
 K| catonowariziot
 Use short multiplication to multiply a 1－digit number by a number with up to 4 digits

Use long multiplication to multiply 3－digit and
4－digit numbers by a number between 11 and 20
324
x15

	e.g. 6.3×7 as 6×7 (42) plus $0.3 \times 7(2.1)$ Double amounts of money by partitioning e.g. $£ 37.45$ doubled is $£ 37$ doubled ($£ 74$) plus 45 p doubled (90p) giving a total of $£ 74.90$	$\begin{aligned} & \hline 1620(5 \times 324) \\ &+ 3240(10 \times 324) \\ &------- \\ & 4860 \end{aligned}$ Choose the most efficient method in any given situation Find simple percentages of amounts $\text { e.g. } 10 \%, 5 \%, 20 \%, 15 \% \text { and } 50 \%$ Begin to multiply fractions and mixed numbers by whole numbers ≤ 10 $\text { e.g. } 4 \times 2 / 3=8 / 3=2^{2 / 3}$ Understand that $1 / 4 \times 12$ means $1 / 4$ of 12 etc Vocabulary Multiply, product, times, lots of
$\begin{gathered} Y 5 \\ \div \end{gathered}$	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by $10,100,1000,10000$ to give whole number answers or answers with 1, 2 or 3 decimal places Use doubling and halving as mental division strategies $\text { e.g. } 34 \div 5 \text { is }(34 \div 10) \times 2$ Use knowledge of multiples and factors, as well as tests for divisibility, in mental division e.g. $246 \div 6$ is $123 \div 3$ e.g. We know that 525 divides by 25 and by 3 Halve amounts of money by partitioning e.g. $1 / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75(£ 37 \cdot 50)$ plus half of 40 p (20p) which is £37.70 Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate	Use the bar model method Use the "bus stop" notation and finding known multiples to subtract, 'chunking' Use short division to divide a number with up to $4 \text { digits by a number } \leq 12 \quad \begin{array}{rr} 0204 & 14 / 31 \\ 31 / 6336 \end{array}$ Give remainders as whole numbers or as fractions or decimals Find non-unit fractions of large amounts Turn improper fractions into mixed numbers and vice versa Choose the most efficient method in any given situation Vocabulary Lots of, chunking, groups, sharing, divisor

$$
\begin{aligned}
& \mathrm{e} . \mathrm{g} .96 \div 6 \text { is } 10+6 \text {, as } 10 \times 6=60 \text { and } \\
& 6 \times 6=36 \\
& \mathrm{e} . \mathrm{g} .312 \div 3 \text { is } 100+4 \text { as } 100 \times 3=300 \text { and } \\
& 4 \times 3=12
\end{aligned}
$$

Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25
Know square numbers and cube numbers
Reduce fractions to their simplest form

Year 6

	Mental calculation	Written calculation
$\begin{gathered} \text { Y6 } \\ + \end{gathered}$	Know by heart number bonds to 100 and use these to derive related facts $\text { e.g. } 3.46+0.54$ Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally $\text { e.g. } 34000+8000$ Add multiples of powers of 10 and near multiples of the same $\text { e.g. } 6345+199$ Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 $\begin{aligned} & \text { e.g. } 4 \cdot 5+6 \cdot 3 \\ & \text { e.g. } 0.74+0.33 \end{aligned}$ Add positive numbers to negative numbers e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number	Use the bar model method Use column addition to add numbers with up to 5 digits Use column addition to add decimal numbers with up to 3 decimal places Add mixed numbers and fractions with different denominators
Y6	Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition e.g. $1000-654$ as $46+300$ in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1place or 2-place decimal numbers using complementary addition and including money $\begin{aligned} & \text { e.g. } 10-3.65 \text { as } 0.35+6 \\ & \text { e.g. } £ 50-£ 34.29 \text { as } 71 p+£ 15 \end{aligned}$ Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places $\begin{aligned} & \text { e.g. } 467900-3005 \\ & \text { e.g. } 4 \cdot 63-1.02 \end{aligned}$ Subtract multiples of powers of 10 and near multiples of the same Subtract negative numbers in a context such as temperature where the numbers make sense	Use the bar model method Use column subtraction to subtract numbers with up to 6 digits Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000 Use complementary addition for subtractions of decimal numbers with up to 3 places, including money Subtract mixed numbers and fractions with different denominators

Know by heart all the multiplication facts up to
12×12
Multiply whole numbers and decimals with up to
3 places by 10,100 or 1000

$$
\text { e.g. } 234 \times 1000=234000
$$

$$
\text { e.g. } 0.23 \times 1000=230
$$

Identify common factors, common multiples and prime numbers and use factors in mental multiplication
e.g. 326×6 is 652×3 which is 1956

Use place value and number facts in mental multiplication
e.g. $4000 \times 6=24000$
e.g. $0.03 \times 6=0.18$

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25

$$
\text { e.g. } 28 \times 25 \text { is a quarter of } 28 \times 100=700
$$

Use rounding in mental multiplication
e.g. 34×19 as $(34 \times 20)-34$

Multiply 1 - and 2-place decimals by numbers up to and including 10 using place value and partitioning

$$
\begin{aligned}
& \text { e.g. } 3.6 \times 4 \text { is } 12+2.4 \\
& \text { e.g. } 2.53 \times 3 \text { is } 6+1.5+0.09
\end{aligned}
$$

Double decimal numbers with up to 2 places using partitioning
e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Know by heart all the division facts up to

$144 \div 12$

Divide whole numbers by powers of 10 to give whole number answers or answers with up to
3 decimal places
Identify common factors, common multiples and primes numbers and use factors in mental division

$$
\text { e.g. } 438 \div 6 \text { is } 219 \div 3 \text { which is } 73
$$

Use tests for divisibility to aid mental calculation
Use doubling and halving as mental division strategies, for example to divide by $2,4,8,5,20$ and 25

Use the bar model method
Use short multiplication to multiply a 1-digit number by a number with up to 4 digits

Use long multiplication to multiply a 2-digit number by a number with up to 4 digits

324
x15

1620 (5x324)

+ 3240 (10x324)
4860

Use short multiplication to multiply a 1-digit number by a number with 1 or 2 decimal places, including amounts of money
Multiply fractions and mixed numbers by whole numbers
Multiply fractions by proper fractions
Use percentages for comparison and calculate simple percentages

Vocabulary

Multiply, product, times

Use the bar model method

Use short division to divide a number with up to
4 digits by a 1-digit or a 2-digit number

$$
2112
$$

3/6336

Use long division to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers

018	(notes)
$25 / 7450$	$5 \times 25=125$
	$10 \times 25=250$

Give remainders as whole numbers or as fractions or as decimals
e.g. $628 \div 8$ is halved three times.

314, 157, 78.5
Divide 1- and 2-place decimals by numbers up to and including 10 using
place value
e.g. $2.4 \div 6=0.4$
e.g. $0.65 \div 5=0.13$
e.g. $£ 6 \cdot 33 \div 3=£ 2 \cdot 11$

Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of $36(18)$ plus half of $0.86(0.43)$

Know and use equivalence between simple fractions, decimals and percentages, including in different contexts
Recognise a given ratio and reduce a given ratio to its lowest terms

Divide a 1-place or a 2-place decimal number by a number ≤ 12 using multiples of the divisors
Divide proper fractions by whole numbers

Vocabulary

Lots of, chunking, groups, sharing, quotient, divisor

